Nonlocal Boundary Value Problem for Impulsive Differential Equations of Fractional Order
نویسندگان
چکیده
Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in various fields, such as physics, mechanics, aerodynamics, chemistry, and engineering and biological sciences, involves derivatives of fractional order. Fractional differential equations also provide an excellent tool for the description of memory and hereditary properties of many materials and processes. In consequence, fractional differential equations have emerged as a significant development in recent years, see 1–3 . As one of the important topics in the research differential equations, the boundary value problem has attained a great deal of attention frommany researchers, see 4–11 and the references therein. As pointed out in 12 , the nonlocal boundary condition can be more useful than the standard condition to describe some physical phenomena. There are three noteworthy papers dealing with the nonlocal boundary value problem of fractional differential equations. Benchohra et al. 12 investigated the following nonlocal boundary value problem
منابع مشابه
Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملExistence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem
In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0
متن کاملExistence Results for Nonlinear Boundary Value Problems of Impulsive Fractional Integrodifferential Equations
In this paper, we investigate the existence result for nonlinear impulsive fractional integro-differential equations with boundary conditions by using fixed point theorem and Green's function. I. INTRODUCTION The topic of fractional differential equations has received a great deal of attention from many scientists and researchers during the past decades; see [1-7]. This is mostly due to the fac...
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملOn Nonlocal Integral Boundary Value Problems for Impulsive Nonlinear Differential Equations of Fractional Order
Abstract. In this paper, we investigate the existence and uniqueness of solutions for impulsive nonlinear differential equations of fractional order with nonlocal integral boundary condition. Our results are based on some suitable fixed point theorems. An illustrative example is presented.
متن کامل